Nuprl Lemma : es-interface-history-pred 11,40

es:ES, A:Type, X:AbsInterface(A List), e:E.
((first(e)))
 (es-interface-history(es;X;e)
 (=
 (if e  X
 (then es-interface-history(es;X;pred(e)) @ X(e)
 (else es-interface-history(es;X;pred(e))
 (fi 
 ( (A List)) 
latex


Definitionss = t, t  T, ES, Type, AbsInterface(A), E, A, x:A  B(x), b, x:AB(x), left + right, let x,y = A in B(x;y), t.1, Void, P  Q, False, type List, first(e), {x:AB(x)} , E(X), x:AB(x), a:A fp B(a), strong-subtype(A;B), case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , e  X, , Top, x:A.B(x), f  g, f(x)?z, loc(e), vartype(i;x), state@i, P  Q, P & Q, P  Q, State(ds), State(ds), <ab>, f(a), x  dom(f), {T}, EqDecider(T), Unit, IdLnk, Id, EOrderAxioms(Epred?info), EState(T), Knd, xt(x), x,yt(x;y), kindcase(ka.f(a); l,t.g(l;t) ), Msg(M), , , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), e < e', r  s, constant_function(f;A;B), X(e), ff, inr x , tt, inl x , True, x.A(x), , [], [car / cdr], mapfilter(f;P;L), A List, before(e), s ~ t, concat(ll), pred(e), es-interface-history(es;X;e), as @ bs, (x  l), es-le-before(es;e), p =b q, i <z j, i j, (i = j), x =a y, null(as), a < b, x f y, a < b, [d], eq_atom$n(x;y), q_le(r;s), q_less(a;b), qeq(r;s), a = b, a = b, deq-member(eq;x;L), b, p  q, p  q, p q, , T
Lemmasappend nil sq, append wf, squash wf, concat wf, bnot wf, eqtt to assert, iff transitivity, eqff to assert, assert of bnot, not wf, es-interface-history wf, ifthenelse wf, mapfilter-append, l member wf, concat append, es-before wf, false wf, mapfilter wf, es-is-interface wf, true wf, btrue wf, bfalse wf, es-interface-val wf, es-interface-val wf2, es-interface wf, subtype rel function, constant function wf, bool wf, qle wf, cless wf, val-axiom wf, rationals wf, nat wf, Msg wf, kindcase wf, Knd wf, EState wf, EOrderAxioms wf, Id wf, IdLnk wf, unit wf, deq wf, event system wf, subtype rel sum, subtype rel list, top wf, member wf, es-E-interface wf, es-E wf, subtype rel wf, assert wf

origin